Primality proof for n = 14474011154664524427946373126085988481603263447650325797860494125407373907997:
Take b = 2.
b^(n-1) mod n = 1.
27413359092552162435694767700453926735143482401279781 is prime.
b^((n-1)/27413359092552162435694767700453926735143482401279781)-1 mod n = 3680285710178017958321162512429685261641070754575808221617538005008727093238, which is a unit, inverse 8307753089984235906883625319683110648166756904703804161871045904830952184079.
(27413359092552162435694767700453926735143482401279781) divides n-1.
(27413359092552162435694767700453926735143482401279781)^2 > n.
n is prime by Pocklington's theorem.