Primality proof for n = 145295143558111:
Take b = 3.
b^(n-1) mod n = 1.
2534364967 is prime.
b^((n-1)/2534364967)-1 mod n = 69216082370408, which is a unit, inverse 75121499342418.
(2534364967) divides n-1.
(2534364967)^2 > n.
n is prime by Pocklington's theorem.