Primality proof for n = 1458566971:
Take b = 2.
b^(n-1) mod n = 1.
6945557 is prime. b^((n-1)/6945557)-1 mod n = 251921865, which is a unit, inverse 426431402.
(6945557) divides n-1.
(6945557)^2 > n.
n is prime by Pocklington's theorem.