Primality proof for n = 147147008300569209775838205151:
Take b = 2.
b^(n-1) mod n = 1.
12110864880705284755213021 is prime.
b^((n-1)/12110864880705284755213021)-1 mod n = 80127643352017148269028336314, which is a unit, inverse 20225358432610889817365670724.
(12110864880705284755213021) divides n-1.
(12110864880705284755213021)^2 > n.
n is prime by Pocklington's theorem.