Primality proof for n = 14753097342555346196473:
Take b = 2.
b^(n-1) mod n = 1.
991864807 is prime.
b^((n-1)/991864807)-1 mod n = 5346346802020683061705, which is a unit, inverse 10619949450083166832412.
5585233 is prime.
b^((n-1)/5585233)-1 mod n = 10940166980634947520051, which is a unit, inverse 9180808815815164862244.
(5585233 * 991864807) divides n-1.
(5585233 * 991864807)^2 > n.
n is prime by Pocklington's theorem.