Primality proof for n = 1490039853025247:
Take b = 2.
b^(n-1) mod n = 1.
833843 is prime.
b^((n-1)/833843)-1 mod n = 651687852898634, which is a unit, inverse 1381331602035500.
3331 is prime.
b^((n-1)/3331)-1 mod n = 151787127010308, which is a unit, inverse 584155503533472.
(3331 * 833843) divides n-1.
(3331 * 833843)^2 > n.
n is prime by Pocklington's theorem.