Primality proof for n = 14924570207:
Take b = 2.
b^(n-1) mod n = 1.
13463 is prime.
b^((n-1)/13463)-1 mod n = 3098688014, which is a unit, inverse 12848259470.
6091 is prime.
b^((n-1)/6091)-1 mod n = 10819649375, which is a unit, inverse 7077496620.
(6091 * 13463) divides n-1.
(6091 * 13463)^2 > n.
n is prime by Pocklington's theorem.