Primality proof for n = 150381227:
Take b = 2.
b^(n-1) mod n = 1.
14851 is prime. b^((n-1)/14851)-1 mod n = 119394691, which is a unit, inverse 83827290.
(14851) divides n-1.
(14851)^2 > n.
n is prime by Pocklington's theorem.