Primality proof for n = 151499460061:
Take b = 2.
b^(n-1) mod n = 1.
22709 is prime.
b^((n-1)/22709)-1 mod n = 100700557299, which is a unit, inverse 109131262320.
2851 is prime.
b^((n-1)/2851)-1 mod n = 129043464489, which is a unit, inverse 104883354335.
(2851 * 22709) divides n-1.
(2851 * 22709)^2 > n.
n is prime by Pocklington's theorem.