Primality proof for n = 152435752726607681:
Take b = 2.
b^(n-1) mod n = 1.
43305611570059 is prime.
b^((n-1)/43305611570059)-1 mod n = 44341761301560243, which is a unit, inverse 37706587074020438.
(43305611570059) divides n-1.
(43305611570059)^2 > n.
n is prime by Pocklington's theorem.