Primality proof for n = 15493986128158476657348900881244458351785958199592331238146398726181728333640083540874179214877522733:
Take b = 2.
b^(n-1) mod n = 1.
40042367836462537109954173483078259560889892167509224859669902483113168741 is prime.
b^((n-1)/40042367836462537109954173483078259560889892167509224859669902483113168741)-1 mod n = 11456986813921321561314221469399226184857176113174910166703321818138802856420149921919375823912936194, which is a unit, inverse 9931398213859233707078738644320979566195998124483564264061642291469731243732695909144488652514145837.
(40042367836462537109954173483078259560889892167509224859669902483113168741) divides n-1.
(40042367836462537109954173483078259560889892167509224859669902483113168741)^2 > n.
n is prime by Pocklington's theorem.