Primality proof for n = 156765911253115553:
Take b = 2.
b^(n-1) mod n = 1.
923685781 is prime.
b^((n-1)/923685781)-1 mod n = 24793373552360192, which is a unit, inverse 26445239365314554.
(923685781) divides n-1.
(923685781)^2 > n.
n is prime by Pocklington's theorem.