Take b = 2.

b^(n-1) mod n = 1.

241 is prime.

b^((n-1)/241)-1 mod n = 74486, which is a unit, inverse 94704.

37 is prime.

b^((n-1)/37)-1 mod n = 49745, which is a unit, inverse 32708.

(37 * 241) divides n-1.

(37 * 241)^2 > n.

n is prime by Pocklington's theorem.