Primality proof for n = 16066359187:
Take b = 2.
b^(n-1) mod n = 1.
114467 is prime.
b^((n-1)/114467)-1 mod n = 15886309915, which is a unit, inverse 4582963595.
157 is prime.
b^((n-1)/157)-1 mod n = 12494035807, which is a unit, inverse 7193583742.
(157 * 114467) divides n-1.
(157 * 114467)^2 > n.
n is prime by Pocklington's theorem.