Primality proof for n = 162128261:
Take b = 2.
b^(n-1) mod n = 1.
165437 is prime. b^((n-1)/165437)-1 mod n = 98455886, which is a unit, inverse 139214439.
(165437) divides n-1.
(165437)^2 > n.
n is prime by Pocklington's theorem.