Primality proof for n = 1631235845567066729:
Take b = 2.
b^(n-1) mod n = 1.
19953467139239 is prime.
b^((n-1)/19953467139239)-1 mod n = 127772059090317689, which is a unit, inverse 949786853836692644.
(19953467139239) divides n-1.
(19953467139239)^2 > n.
n is prime by Pocklington's theorem.