Primality proof for n = 1671380110708512442103829423217:
Take b = 2.
b^(n-1) mod n = 1.
3458867485158836715058751 is prime.
b^((n-1)/3458867485158836715058751)-1 mod n = 1658201467692088371652958845364, which is a unit, inverse 1634207740446044715704164221008.
(3458867485158836715058751) divides n-1.
(3458867485158836715058751)^2 > n.
n is prime by Pocklington's theorem.