Primality proof for n = 1671675350725190618677:
Take b = 2.
b^(n-1) mod n = 1.
4221402400821188431 is prime.
b^((n-1)/4221402400821188431)-1 mod n = 1226932990301795677609, which is a unit, inverse 287395635600359905089.
(4221402400821188431) divides n-1.
(4221402400821188431)^2 > n.
n is prime by Pocklington's theorem.