Primality proof for n = 167773885276849215533569:
Take b = 3.
b^(n-1) mod n = 1.
97859369123353 is prime.
b^((n-1)/97859369123353)-1 mod n = 43149081517632458470332, which is a unit, inverse 55912800758225171123059.
(97859369123353) divides n-1.
(97859369123353)^2 > n.
n is prime by Pocklington's theorem.