Primality proof for n = 1684996666696914987166688442938726735569737456760058294185521417407:
Take b = 2.
b^(n-1) mod n = 1.
12403365937452778821493785232092281 is prime.
b^((n-1)/12403365937452778821493785232092281)-1 mod n = 748531847272626648888883364290799697795540949344537019955678077042, which is a unit, inverse 726970854320858829302379149703741942154031199504794618641771580995.
(12403365937452778821493785232092281) divides n-1.
(12403365937452778821493785232092281)^2 > n.
n is prime by Pocklington's theorem.