Primality proof for n = 16864411292623:
Take b = 2.
b^(n-1) mod n = 1.
936911738479 is prime.
b^((n-1)/936911738479)-1 mod n = 262143, which is a unit, inverse 6497426775924.
(936911738479) divides n-1.
(936911738479)^2 > n.
n is prime by Pocklington's theorem.