Primality proof for n = 168650669431260323389:
Take b = 2.
b^(n-1) mod n = 1.
12695774573265607 is prime.
b^((n-1)/12695774573265607)-1 mod n = 498220274880388418, which is a unit, inverse 132237738639215230653.
(12695774573265607) divides n-1.
(12695774573265607)^2 > n.
n is prime by Pocklington's theorem.