Primality proof for n = 173308343918874810521923841:
Take b = 3.
b^(n-1) mod n = 1.
361725589517273017 is prime.
b^((n-1)/361725589517273017)-1 mod n = 9183761016836624269894001, which is a unit, inverse 112963131467374717304890528.
(361725589517273017) divides n-1.
(361725589517273017)^2 > n.
n is prime by Pocklington's theorem.