Primality proof for n = 173378833005251801:
Take b = 2.
b^(n-1) mod n = 1.
13331831 is prime.
b^((n-1)/13331831)-1 mod n = 96522208899626816, which is a unit, inverse 143989136723077954.
24809 is prime.
b^((n-1)/24809)-1 mod n = 155329552492567780, which is a unit, inverse 90806246677414555.
(24809 * 13331831) divides n-1.
(24809 * 13331831)^2 > n.
n is prime by Pocklington's theorem.