Take b = 2.

b^(n-1) mod n = 1.

463 is prime.

b^((n-1)/463)-1 mod n = 1362677, which is a unit, inverse 37014.

43 is prime.

b^((n-1)/43)-1 mod n = 914282, which is a unit, inverse 1360574.

(43 * 463) divides n-1.

(43 * 463)^2 > n.

n is prime by Pocklington's theorem.