Primality proof for n = 1757533197983:
Take b = 2.
b^(n-1) mod n = 1.
878766598991 is prime.
b^((n-1)/878766598991)-1 mod n = 3, which is a unit, inverse 585844399328.
(878766598991) divides n-1.
(878766598991)^2 > n.
n is prime by Pocklington's theorem.