Primality proof for n = 17676318486848893030961583018778670610489016512983351739677143:
Take b = 2.
b^(n-1) mod n = 1.
1671675350725190618677 is prime.
b^((n-1)/1671675350725190618677)-1 mod n = 10284737999354094598060390272144154584150835863963848251424793, which is a unit, inverse 9843000667911915553999232819850719620514344181922985220157593.
3560584187609609 is prime.
b^((n-1)/3560584187609609)-1 mod n = 14138758575076664121734287771372905072372580154736718729774748, which is a unit, inverse 16337093390393883798374655004723331434271438908765034605199713.
(3560584187609609 * 1671675350725190618677) divides n-1.
(3560584187609609 * 1671675350725190618677)^2 > n.
n is prime by Pocklington's theorem.