Primality proof for n = 17942392077136950785977011829:
Take b = 2.
b^(n-1) mod n = 1.
1495199339761412565498084319 is prime.
b^((n-1)/1495199339761412565498084319)-1 mod n = 4095, which is a unit, inverse 2808564913661730269550980362.
(1495199339761412565498084319) divides n-1.
(1495199339761412565498084319)^2 > n.
n is prime by Pocklington's theorem.