Primality proof for n = 1814921:
Take b = 3.
b^(n-1) mod n = 1.
157 is prime.
b^((n-1)/157)-1 mod n = 38064, which is a unit, inverse 1430757.
17 is prime.
b^((n-1)/17)-1 mod n = 632547, which is a unit, inverse 1585796.
(17^2 * 157) divides n-1.
(17^2 * 157)^2 > n.
n is prime by Pocklington's theorem.