Primality proof for n = 1841796684943080163:
Take b = 2.
b^(n-1) mod n = 1.
9538204373 is prime.
b^((n-1)/9538204373)-1 mod n = 1589703449597413859, which is a unit, inverse 979424562444996027.
(9538204373) divides n-1.
(9538204373)^2 > n.
n is prime by Pocklington's theorem.