Primality proof for n = 18473014193:
Take b = 2.
b^(n-1) mod n = 1.
1751993 is prime. b^((n-1)/1751993)-1 mod n = 14299252396, which is a unit, inverse 1894176851.
(1751993) divides n-1.
(1751993)^2 > n.
n is prime by Pocklington's theorem.