Primality proof for n = 18702316172396287:
Take b = 2.
b^(n-1) mod n = 1.
115446396125903 is prime.
b^((n-1)/115446396125903)-1 mod n = 8975855507098531, which is a unit, inverse 6481854957119264.
(115446396125903) divides n-1.
(115446396125903)^2 > n.
n is prime by Pocklington's theorem.