Primality proof for n = 188642800889:
Take b = 2.
b^(n-1) mod n = 1.
23580350111 is prime.
b^((n-1)/23580350111)-1 mod n = 255, which is a unit, inverse 34029681729.
(23580350111) divides n-1.
(23580350111)^2 > n.
n is prime by Pocklington's theorem.