Primality proof for n = 1898722439:
Take b = 2.
b^(n-1) mod n = 1.
868583 is prime. b^((n-1)/868583)-1 mod n = 1209578668, which is a unit, inverse 947448799.
(868583) divides n-1.
(868583)^2 > n.
n is prime by Pocklington's theorem.