Primality proof for n = 190234753:
Take b = 2.
b^(n-1) mod n = 1.
281 is prime.
b^((n-1)/281)-1 mod n = 78633124, which is a unit, inverse 99035464.
43 is prime.
b^((n-1)/43)-1 mod n = 71103006, which is a unit, inverse 7744215.
41 is prime.
b^((n-1)/41)-1 mod n = 7426095, which is a unit, inverse 182668958.
(41 * 43 * 281) divides n-1.
(41 * 43 * 281)^2 > n.
n is prime by Pocklington's theorem.