Primality proof for n = 1903129742795028023201:

Take b = 2.

b^(n-1) mod n = 1.

1249292843947 is prime.
b^((n-1)/1249292843947)-1 mod n = 926103283304007242421, which is a unit, inverse 1840810486281443399242.

(1249292843947) divides n-1.

(1249292843947)^2 > n.

n is prime by Pocklington's theorem.