Primality proof for n = 191519:
Take b = 2.
b^(n-1) mod n = 1.
3089 is prime. b^((n-1)/3089)-1 mod n = 180784, which is a unit, inverse 169468.
(3089) divides n-1.
(3089)^2 > n.
n is prime by Pocklington's theorem.