Primality proof for n = 1919519569386763:
Take b = 2.
b^(n-1) mod n = 1.
8574133 is prime.
b^((n-1)/8574133)-1 mod n = 1059928654987440, which is a unit, inverse 1290547218147893.
127 is prime.
b^((n-1)/127)-1 mod n = 576774792492621, which is a unit, inverse 1870148777187772.
(127 * 8574133) divides n-1.
(127 * 8574133)^2 > n.
n is prime by Pocklington's theorem.