Primality proof for n = 198211423230930754013084525763697:
Take b = 2.
b^(n-1) mod n = 1.
3044861653679985063343 is prime.
b^((n-1)/3044861653679985063343)-1 mod n = 75003846807402791567026918316103, which is a unit, inverse 169495726156219349589498880139957.
(3044861653679985063343) divides n-1.
(3044861653679985063343)^2 > n.
n is prime by Pocklington's theorem.