Primality proof for n = 19953467139239:
Take b = 2.
b^(n-1) mod n = 1.
85831 is prime.
b^((n-1)/85831)-1 mod n = 4476454517442, which is a unit, inverse 8460635604093.
2549 is prime.
b^((n-1)/2549)-1 mod n = 12746029004369, which is a unit, inverse 9531362705223.
(2549 * 85831) divides n-1.
(2549 * 85831)^2 > n.
n is prime by Pocklington's theorem.