Primality proof for n = 1997278224258685136359:
Take b = 2.
b^(n-1) mod n = 1.
7287687546097909 is prime.
b^((n-1)/7287687546097909)-1 mod n = 1961774936192948263648, which is a unit, inverse 1063789206124488227763.
(7287687546097909) divides n-1.
(7287687546097909)^2 > n.
n is prime by Pocklington's theorem.