Primality proof for n = 20387630040577:
Take b = 2.
b^(n-1) mod n = 1.
1947073 is prime.
b^((n-1)/1947073)-1 mod n = 8781842158421, which is a unit, inverse 8827434988267.
401 is prime.
b^((n-1)/401)-1 mod n = 3886750572315, which is a unit, inverse 8110381387918.
(401 * 1947073) divides n-1.
(401 * 1947073)^2 > n.
n is prime by Pocklington's theorem.