Primality proof for n = 204061199:
Take b = 2.
b^(n-1) mod n = 1.
3769 is prime.
b^((n-1)/3769)-1 mod n = 58449174, which is a unit, inverse 108819925.
107 is prime.
b^((n-1)/107)-1 mod n = 116529308, which is a unit, inverse 70558875.
(107 * 3769) divides n-1.
(107 * 3769)^2 > n.
n is prime by Pocklington's theorem.