Primality proof for n = 20492504424583:
Take b = 2.
b^(n-1) mod n = 1.
3415417404097 is prime.
b^((n-1)/3415417404097)-1 mod n = 63, which is a unit, inverse 19191393032546.
(3415417404097) divides n-1.
(3415417404097)^2 > n.
n is prime by Pocklington's theorem.