Primality proof for n = 207941:
Take b = 2.
b^(n-1) mod n = 1.
281 is prime.
b^((n-1)/281)-1 mod n = 206196, which is a unit, inverse 50168.
37 is prime.
b^((n-1)/37)-1 mod n = 38772, which is a unit, inverse 185775.
(37 * 281) divides n-1.
(37 * 281)^2 > n.
n is prime by Pocklington's theorem.