Primality proof for n = 20850849555552798305550425353:
Take b = 2.
b^(n-1) mod n = 1.
194995755782084489 is prime.
b^((n-1)/194995755782084489)-1 mod n = 13958705882451561869515934397, which is a unit, inverse 5226651491880192909373901355.
(194995755782084489) divides n-1.
(194995755782084489)^2 > n.
n is prime by Pocklington's theorem.