Primality proof for n = 211191412011185201:
Take b = 2.
b^(n-1) mod n = 1.
347582969077 is prime.
b^((n-1)/347582969077)-1 mod n = 185527529140536649, which is a unit, inverse 131012102865490614.
(347582969077) divides n-1.
(347582969077)^2 > n.
n is prime by Pocklington's theorem.