Primality proof for n = 21138543849953333:
Take b = 2.
b^(n-1) mod n = 1.
110947 is prime.
b^((n-1)/110947)-1 mod n = 16257803787716850, which is a unit, inverse 14846353936324122.
17519 is prime.
b^((n-1)/17519)-1 mod n = 3443702168575721, which is a unit, inverse 5321090203133264.
(17519 * 110947) divides n-1.
(17519 * 110947)^2 > n.
n is prime by Pocklington's theorem.