Primality proof for n = 21258969373:
Take b = 2.
b^(n-1) mod n = 1.
121283 is prime.
b^((n-1)/121283)-1 mod n = 4094585588, which is a unit, inverse 20258460660.
541 is prime.
b^((n-1)/541)-1 mod n = 898561711, which is a unit, inverse 2834262398.
(541 * 121283) divides n-1.
(541 * 121283)^2 > n.
n is prime by Pocklington's theorem.