Primality proof for n = 21325306200707:
Take b = 2.
b^(n-1) mod n = 1.
11602451687 is prime.
b^((n-1)/11602451687)-1 mod n = 10415373721917, which is a unit, inverse 14514569667596.
(11602451687) divides n-1.
(11602451687)^2 > n.
n is prime by Pocklington's theorem.